Package com.rapidminer.ItemRecommendation

Source Code of com.rapidminer.ItemRecommendation.ItemAttributeKnnO

package com.rapidminer.ItemRecommendation;


import java.util.List;

import com.rapidminer.data.EntityMapping;
import com.rapidminer.data.IEntityMapping;
import com.rapidminer.data.IPosOnlyFeedback;
import com.rapidminer.data.PosOnlyFeedback;
import com.rapidminer.data.SparseBooleanMatrix;
import com.rapidminer.example.Attribute;
import com.rapidminer.example.AttributeRole;
import com.rapidminer.example.Attributes;
import com.rapidminer.example.Example;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.operator.Operator;
import com.rapidminer.operator.OperatorDescription;
import com.rapidminer.operator.OperatorException;
import com.rapidminer.operator.UserError;
import com.rapidminer.operator.ports.InputPort;
import com.rapidminer.operator.ports.OutputPort;
import com.rapidminer.operator.ports.metadata.ExampleSetPassThroughRule;
import com.rapidminer.operator.ports.metadata.ExampleSetPrecondition;
import com.rapidminer.operator.ports.metadata.GenerateNewMDRule;
import com.rapidminer.operator.ports.metadata.MetaData;
import com.rapidminer.operator.ports.metadata.SetRelation;
import com.rapidminer.parameter.ParameterType;
import com.rapidminer.parameter.ParameterTypeInt;
import com.rapidminer.tools.Ontology;

/**
* ItemAttributeKnn operator
*
* @see com.rapidminer.ItemRecommendation.ItemAttributeKnnO
* @see com.rapidminer.ItemRecommendation.ItemAttributeKnn
*
* @author Matej Mihelcic (Ru�er Bo�kovi� Institute)
*/

public class ItemAttributeKnnO extends Operator{

    public static final String PARAMETER_K = "k";
   
    private InputPort exampleSetInput = getInputPorts().createPort("example set");
    private InputPort exampleSetInput1 = getInputPorts().createPort("item attributes");
    private OutputPort exampleSetOutput = getOutputPorts().createPort("example set");
    private OutputPort exampleSetOutput1 = getOutputPorts().createPort("Model");
   
   
    /**
     * Constructor
     */
    public ItemAttributeKnnO(OperatorDescription description) {
      super(description);

      exampleSetInput.addPrecondition(new ExampleSetPrecondition(exampleSetInput, "user identification", Ontology.ATTRIBUTE_VALUE));
      exampleSetInput.addPrecondition(new ExampleSetPrecondition(exampleSetInput, "item identification", Ontology.ATTRIBUTE_VALUE));
      exampleSetInput1.addPrecondition(new ExampleSetPrecondition(exampleSetInput1, "item identification", Ontology.ATTRIBUTE_VALUE));
      exampleSetInput1.addPrecondition(new ExampleSetPrecondition(exampleSetInput1, "attribute identification", Ontology.ATTRIBUTE_VALUE));
      getTransformer().addRule(new ExampleSetPassThroughRule(exampleSetInput, exampleSetOutput, SetRelation.EQUAL) {
      });
     
      getTransformer().addRule(new GenerateNewMDRule(exampleSetOutput1, new MetaData(ItemRecommender.class)) {
       });
    }
   
    public List<ParameterType> getParameterTypes() {
       List<ParameterType> types = super.getParameterTypes();
       types.add(new ParameterTypeInt(PARAMETER_K, "The used number of nearest neighbors. Range: integer; 1-+?; default: 80", 1, Integer.MAX_VALUE, 80, false));
       return types;
       }
   
    @Override
    public void doWork() throws OperatorException {
     
      ExampleSet exampleSet = exampleSetInput.getData();
      Attributes attributes = exampleSet.getAttributes();
     
      for(Attribute a : attributes)
        System.out.println(a.toString());
         
      System.out.println(exampleSet.size());
          System.out.println(attributes.size());
         
         
           IPosOnlyFeedback training_data=new PosOnlyFeedback();
           IEntityMapping user_mapping=new EntityMapping();
           IEntityMapping item_mapping=new EntityMapping();
           IEntityMapping attribute_mapping=new EntityMapping();
          
           if (exampleSet.getAttributes().getSpecial("user identification") == null) {
                    throw new UserError(this,105);
                }
           
           if (exampleSet.getAttributes().getSpecial("item identification") == null) {
                    throw new UserError(this, 105);
                }
          
          
           Attributes Att = exampleSet.getAttributes();
           AttributeRole ur=Att.getRole("user identification");
           Attribute u=ur.getAttribute();
           AttributeRole ir=Att.getRole("item identification");
           Attribute i=ir.getAttribute();
          
          for (Example example : exampleSet) {
           
            double j=example.getValue(u);
            int uid=(int) j;

            j=example.getValue(i);
            int iid=(int) j;
           
            training_data.Add(user_mapping.ToInternalID(uid), item_mapping.ToInternalID(iid));
            checkForStop();
          }
         
          ExampleSet attribute_set=exampleSetInput1.getData();
         
           if (attribute_set.getAttributes().getSpecial("item identification") == null) {
                    throw new UserError(this,105);
                }
           
           if (attribute_set.getAttributes().getSpecial("attribute identification") == null) {
                    throw new UserError(this, 105);
                }
          
          
          Attributes aatr = attribute_set.getAttributes();
          AttributeRole ar=aatr.getRole("attribute identification");

          Attribute at=ar.getAttribute();
          ir=aatr.getRole("item identification");

          i=ir.getAttribute();
          SparseBooleanMatrix mat=new SparseBooleanMatrix();
         
         
          for (Example example : attribute_set) {
         
          double j;

          j=example.getValue(i);
          int iid=item_mapping.ToInternalID((int) j);
         
          j=example.getValue(at);
          int aid=attribute_mapping.ToInternalID((int)j);
       
          mat.setLocation(iid, aid, true);
        }
       
          
           ItemAttributeKnn recommendAlg=new ItemAttributeKnn();
         
           int K=getParameterAsInt("k");
           recommendAlg.setK(K);
           recommendAlg.SetItemAttributes(mat);
           recommendAlg.SetFeedback(training_data);
           recommendAlg.user_mapping=user_mapping;
           recommendAlg.item_mapping=item_mapping;
           checkForStop();
           recommendAlg.Train();
           checkForStop();
          
           exampleSetOutput.deliver(exampleSet);
           exampleSetOutput1.deliver(recommendAlg);
          
    }
  }
TOP

Related Classes of com.rapidminer.ItemRecommendation.ItemAttributeKnnO

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.